We discussed a major essay by Robert Verzola, in which he outlined the ‘war against abundance in the physical world’, in two parts on the 15th and the 16th.
This was in fact his second essay on the topic, as explained here.
His third essay is a draft on ‘Studying Abundance‘, and an explicit critique of an economics which only looks at scarcity.
This essay is again a milestone in peer to peer theory, which centers around the concept of abundance and the commons.
Roberto Verzola:
“1. Abundance as a field of study
Because abundance is clearly present in many aspects of human life, it is obviously an interesting phenomenon and its study should logically be a major field of study. Yet, economics practically denies abundance, defining itself as the study of efficient options in the context of scarcity. Economists often say that when a good starts becoming abundant, it stops becoming interesting, because the economic problem has been solved. If indeed, abundance is recognized as the solution to the problem of scarcity, shouldn’t it be studied even more? Shouldn’t we learn the conditions that lead to abundance, and the conditions that keep it going? Shouldn’t we acquire the knowledge and skill to generate abundance at will? Shouldn’t we master the art and science of making one form of abundance create another, and another, leading to a cascade of abundance?
Abundance is simply one end of a continuum that has scarcity at its other end. Obviously, anything that is relatively scarce is, at the same time, relatively abundant. For completeness and by any form of logic, the entire continuum should deserve our attention and study. We need a new economic science that studies both scarcity and abundance.
In fact, many of the questions raised here go beyond the realm of economics. They need a multi-disciplinary approach that includes expertise from the social, natural and physical sciences.
Indeed, the questions raised by a study of abundance are worthy scientific challenges.
Let us apply our new-found awareness and curiosity about abundance and make the first step towards studying it.
Let us see how abundance may be classified..
2. Classifying abundance
Abundance may be classified in various ways, each way revealing additional facets about the phenomenon and giving us hints about tapping it for the human good. For instance, abundance may be classified according to:
* Space.
Is it, like a waterfall, available to a few communities only? Local sources need local management, where face-to-face interaction between acquaintances may ease the tension of resource conflicts. In fact, many resources are actually local, though nation-states have appropriated these for themselves and turned them into national patrimony. The Regalian doctrine that favor national over local control of resources is, in many countries, vestige of their colonial past. The continuing debates between local and national decision-making in the case of forests, dams and mine sites reflect this ongoing tension between local and national management of sources of abundance. This conflict becomes every more complicated with the entry of corporations, who range the globe for resources to tap until these are depleted and move on. Some sources of abundance, like seas and great rivers, bring benefits to more than one country, and therefore require even more delicate and sensitive negotiations. Resource conflicts may erupt into wars, especially with resources which are being gradually depleted. The truly global sources of abundance, like our atmosphere and the oceans, require complex international management, as can be seen today in the climate change negotiations. Each of these types need skill and knowledge not just in the scientific aspects of abundance but in a whole range of areas that include political, economic, social, cultural and historical perspectives.
Negotiations between potential beneficiaries and other stakeholders involving spatially-limited abundance can be highly unequal due to existing assymetric power relations. This is even truer in the case of abundance that is spread over the time dimension, as explained below.
* Time.
Is the abundance precarious? Precarious abundance is one whose collapse is imminent and might be gone soon, and we had better do something about it quickly if we want to continue enjoying its benefits. Is it temporary? This would refer to phenomena that last for less than a human lifetime, perhaps a gold rush in some mountainside, or a discovery of a huge pile of guano in an isolated island or cavern. Will it last for a few human lifetimes? Then it is a short-term abundance, like oil is turning out to be. If it will last many lifetimes more, then it is a medium-term abundance, like, possibly, coal. Forests, rivers, lakes, inland seas and other long-term sources of abundance should last beyond human existence. But because of our own profligacy, ignorance or indifference, these long-term resources have instead been turned into short-term resources that will be gone in a few generations.
This are huge challenges, which should be of interest to all. How do we stop a precarious resource from imminent collapse? How do we turn a temporary abundance into a long-lasting one, that can serve not only a few but many generations, if not every generation that is yet to come. The seventh generation principle of native American Indians, it is said, reckoned decisions in terms of their effects up to the seventh generation.
Shouldn’t we, given the greater power of our technologies, look even farther into the future?
Future generations cannot negotiate for themselves. Neither can plants and animals. Thus, some humans must take up the cudgels for these voiceless stakeholders. Negotiating for access is hard enough when a resource is abundant, how much more when it becomes scarce, and furthermore, one has no voice? This situation demands not only the utmost of cross-species and cross-generation empathy from us but also the deepest appreciation of the interconnectedness of generations and species.
* Social sectors.
Certain types of abundance are accessible to all, other are accessible only to those who have the wealth to exploit them. When the sun is up, poor and rich alike can enjoy the tan, the warmth and the Vitamin D. Anyone can set up a solar water heater, a solar food cooker, or a photovoltaic panel. But only corporate giants can access the oil and gas within the deep bowels of the earth, and the process these into the various fuels they need. It should thus be obvious which abundant energy source should receive the highest priority in terms of government research, subsidy and preference.
* Across species.
Appropriating the world’s abundance exclusively for the human is a utilitarian perspective that is increasingly under question. A less anthropocentric view concedes the right of other species to exist, and therefore to survive. It further concedes other species the right to their own living space, a concession that everyone must eventually make, if not for the sake of these species, then also for the sake of future generations. This explicit concession is already enshrined in the design principles of at least one farming system. Permaculture parcels every farm into several zones. Zone 5 is wilderness, a cascade of abundance reserved for other species and not to be casually intruded upon even by its so-called human owners, and then only as visitors.5 Reserved wilderness areas within the permaculture farm allow us to witness, study and appreciate at close range how nature’s abundance, left to its own, plays itself out.
* Elemental basis.
Pre-history has seen a stone-based as well iron-based eras featuring a specific set of abundance that characterize them. Information abundance is silicon-based, dependent on technological advances in semiconductors, of which silicon is one, together with the benefits of digitalization, which made the reproduction of any number of identical copies over unlimited generations a possibility. Ecological abundance is carbon-based. Carbon’s natural affinity to hydrogen and oxygen created organic substances that formed the basis of life and of reproductive processes. These led to the great abundance in nature that is ultimately our very own basis for existence. The abundance of solar energy is hydrogen-based. Hopefully, in the future, another hydrogen-based energy economy, using hydrogen extracted from water to run fuel cells, can replace the unsustainable fossil fuel-based energy economy we have today. “