The Henry Ford moment of physical peer production: Wikispeed’s Xtreme Manufacturing Methodology

WikiSpeed does not have the ambition to become the 21st century General Motors and produce tens of thousands of cars, even locally. As a matter of fact, at first Joe Justice tried to make Wikispeed an NGO, but the application was rejected in the U.S. under the argument that designing and producing highly efficient cars necessarily entails a ‘for profit’ motivation.

The following is from an account by Benjamin Tinq (of Ouishare Europe), after a long encounter with Joe Justice of Wikispeed in Barcelona.

The question is: what makes the rapid design and production of Wikispeed possible?

Benjamin writes:

“From Joe’s words, “this was only possible because the car was modular”. Like modern software applications are comprised of several modules, the WikiSpeed car is a combination of 8 parts that can be dismantled and assembled back quickly.

I don’t know whether we will need gasoline, electric or hydrogen cars tomorrow. I don’t have to know, because I designed my car so that I can change the motor in about the same time that it takes to change a tire.

This allows the team to iterate the entire car in hours, or to work on specific parts without impacting the rest of the work. For instance, as a result of feedback from their first crash test, a WikiSpeed volunteer and his son teamed up to build a better front crash structure. They came up with a better design in a few days. The whole car can transform from a race car, to a commuter car, to a pickup truck, by changing only the necessary parts.

The eight parts are bound by a modular contract, or a set of specifications ensuring that they will always fit together, whatever changes are brought to one part or another. Joe also imagines customers or third party manufacturers coming up with custom parts that sit upon the chassis, through what you might call an AMI, or Application Manufacturing Interface. This “LEGO mindset” is reminiscent of other modular manufacturing projects, such as the OpenStructures manufacturing grid community, or the Objectomie project (modular kitchen appliances).

To enable interoperability, modular manufacturing calls for Open Source / Free Hardware. On this topic, which might scare your average engineer, Joe Justice is unequivocal:

I don’t understand people that tell me that open source hardware does not make any sense from a business perspective. The minute they ship their blueprints to China for manufacturing, clones start popping up because there is no IP protection there. Since it’s open source “by default”, why not open up everything from start, build a true community around your product and co-design it for real impact ?

With this mindset, the blueprints of the car, as well as the WikiSpeed methodology are shared freely with the community, so that anyone can start building a WikiSpeed car in their garage. Like Arduino, the only thing that is not open source is the brand – to ensure quality control.

In the software industry, projects used to take several years before the customer was able to lay his hands on the product he ordered. This often resulted in delays, cost overheads and disappointing deliverables. During the last decade, the Agile approach has been taking over software projects management, shortening product cycles from a few years to a few days. Guess what happens when you apply this to the building of physical products?

The entire project management system of WikiSpeed is comprised of a giant wall of sticky notes, called Kanban. This board maps all tasks necessary to run the project, from marketing to hardware development, to delivery or finance. Visualizing the task backlog allows any team member to get an instant grasp of what has been done (or pending review), what is happening now, and what is yet to be done, thus avoiding hidden delays. They know exactly how long a task will take, how much it will cost and what features are expected.

All team members pull from a unique backlog which is open to anyone (even the public), and all required tools are at hand in a WikiSpeed garage, enabling anyone to jump in and take ownership of a task at any moment. This includes personal objectives of the team:

We found out that when the team was happy, we were able to complete up to 10 times the amount of work we were delivering when the team was just feeling okay. For this reason, we treat our team members as customers. Making them happy is one of our top business priorities, and tasks that support the team morale are prioritized with other tasks in the same backlog.

What is Extreme Manufacturing?

Treating hardware products like software by applying modularity and agility principles to the physical world, gave birth to a revolutionary process: Extreme Manufacturing (XM). The name was coined after Extreme Programming (XP) software development by Joe Justice and Marcin Jacubowski, founder of Open Source Ecology. OSE has been developing a set of 50 open source industrial machines capable of building a modern civilization from scratch, and is now using XM after Joe gave an Agile crash course to Marcin earlier this year.

The Extreme Manufacturing approach enables maximum velocity and minimum cost of making changes by adopting multiple short development cycles rather than a long one, in order to recieve early and regular user feedback. While standard development cycles in the manufacturing industry take several years, WikiSpeed has 7 day development cycles – called “Sprints”.

Applying the mindset “working product is the deliverable”, XM applies Test-Driven Manufacturing: before any work is done, the team defines the tests for quality goals on criteria such as road-legal safety, comfort or efficiency. Passing the tests while meeting the vision of the Product Owner validates an iteration of a working product. When tests are too expensive to carry out every seven days – for instance, road-legal crash tests – WikiSpeed replaces them by computer simulations, of which the accuracy is refined by real data whenever they can afford a crash test.

We practiced XM during the workshops in Rome, Barcelona and Paris, where Joe guided a bunch of improvised Product Owners among us through the process:

1) Defining the product vision (role of the Product Owner)

2) Crafting user stories to make the vision tangible for everyone

3) Defining the tests required to validate each user story for the product

4) Defining the tasks that need to be done to iterate the product on each user story

5) Prioritize the user stories (features) : some may need to come before others

6) Planning the demo time to showcase the new current state of the product

7) Planning the work time (including tests) ahead of demo, and assigning tasks

The last two steps basically consist of “Planning a Sprint”, in other words: figuring out the leanest thing that can be done to successfully iterate the product before next week. For this purpose, WikiSpeed hosts a 1 hour weekly standup call with the global team which is distributed across several countries. A short YouTube video of the current state of the product is shown, then people assign themselves tasks; each garage relies on its own Kanban board to optimize its workflow during the week, and all boards are all synced on a weekly basis with Scrumy, a free online tool for backlog management.

A recurring question from workshop participants was: is this Extreme Manufacturing or Extreme Prototyping? In other words, how does it scale?

Firstly, scale is not relevant to WikiSpeed. Cars are produced on-demand, when a client offers to pay for it. This implies almost no capital investment upfront to produce a SGT-01 commercial unit, which costs $14K for a $25K price tag. The new WikiSpeed commuter car will be sold around $17K, and Joe is already thinking about a future $1.000 “mini car”. R&D being carried out along the way, its costs are supported both by sales and donations made via the WikiSpeed homepage.

WikiSpeed does not grow, it distributes itself. This development model is pioneered by Open Source Ecology and puts the open, independent replication of its business model at the core of its operational strategy. Shared knowledge and radical collaboration allows economies of scope rather than economies of scale, and quality is ensured by common tests and a shared kanban.

The Distributive Enterprise model is an expression of human-centered economics of collaborative production, where people regain their autonomy in a complex world.

To distribute even more quickly, WikiSpeed members are currently practicing to build cars within a rectangular space marked on the ground. By achieving this, micro factories could be encapsulated within containers, and shipped to where there is demand for local production. Once the work is done, a micro factory could be moved to a surrounding area to meet new demand.”

Leave A Comment

Your email address will not be published. Required fields are marked *