* Article: REPRODUCING WEALTH WITHOUT MONEY, ONE 3D PRINTER AT A TIME: THE CUNNING OF INSTRUMENTAL REASON. Johan Soderbergh. Journal of Peer Production, Issue 4.
A Summary:
“This paper reflects a long tradition of utopian thought in engineering, a tradition in which the progressive application of human reason to nature is projected to make the market obsolete. This promise comes in at least two versions. One tendency, epitomised by the ‘red cyberneticists’ in the Soviet Union, primarily objects to the irrationality of the price mechanism, and strives to replace the market with computers as a means of allocating resources (Dyer-Witheford, 2013). The second tendency, to which Rep-rap project arguably belongs, looks forward to the day when wealth is so abundant that scarcity will have been superseded, and markets with it. But the quote testifies to another constant also historically prevalent in engineering thought, namely an uneasiness about conflicts of values and interests that might erupt in violence. To avoid this scenario, emancipation must be derived from the manipulation of natural laws that evolve independently of human consciousness and deliberations. This corresponds to a vision in which the market society, or whatever part of it is held to be undesirable, is to be overcome through a (second, third…) industrial revolution. By contrast, the opposing understanding of revolution situates human freedom in a radical break with the past and with the chain of causality that rules in nature. Another way to understand the word “revolution” in both these cases, is as “politics”. What is at stake, then, is two different understandings of how to think and do politics. The first prescribes technological development as a means of promoting social change, while the second puts its faith in popular mobilisation and the articulation of conflict. It is not my intention to compare and contrast the two ideas of revolution/politics in order to show one of them (i.e. the engineer’s vision) to be wrong. Instead, this paper explores their common historical roots and interdependencies. There was a time when there was no clear separation between the politics of the engineer and the politics of the social reformer/militant (cf. Jamison, 2006). As we will see later, the parting of the ways had something to do with the rebellious weavers of Lyon, the world’s first computerised workers. If I choose to stress the commonalities rather than the divergences, it is partly because the two ways of thinking and doing revolution/politics seem about to converge again. Geeks and engineers are forced to engage in parliamentary politics in response to intellectual property laws and related enforcement regimes. Social activists, in turn, are compelled to become acquainted with natural science and engineering in order to make sense of the social conflicts characteristic of today’s world .”
Excerpted from the conclusion:
“This article started out by observing that there are two related but partially opposed conceptions of revolution and, by extension, of politics. One idea prescribes social change through the development of new technology, whereby clashes between opposing interests can be short-circuited. The other stresses popular mobilisation and articulation of conflict, possibly culminating in violence followed by the depravation of the original values. In reality, neither has a particularly promising track record. On the subject of technology-driven revolution, David Noble identified the key question more than 30 years ago: How is it that everything seems to change constantly while nothing essential moves? He sought an answer in the engineering schools and their reproduction of a certain engineering subjectivity. Assuming that Noble was right, what is one to make of the current deprofessionalisation of engineering practices, evidenced in the existence of an ever-expanding community of hobbyist-engineers? The same observation holds for education. The hacker personifies a learning process that has escaped established engineering curriculums and the associated educational institutions. As the Mentor put it in his famous 1986 manifesto, the hacker rejects the pre-chewed chunks of knowledge spoon-fed to him by teachers.
The Rep-rap project sets out to provide one piece of the puzzle in a larger peer-to-peer manufacturing infrastructure. With such an infrastructure in place, engineers can bypass fixed capital. It is a roadmap for the “exodus” of engineering practices from wage labour relations and (which is the same thing) from commodity production. The role assigned to “self-replication” in this larger scheme of things, although framed within a conceptual framework of evolutionary laws and technical determinism, testifies to the very opposite, the importance of design choices. The kind of 3D-printer that can reproduce itself (in symbiosis with human beings) is designed to ensure the community’s functional autonomy from corporations and venture capital. The counter-scenario unfolds if the community relies on a Rep-Strap, that is to say, on a 3D printer where critical parts can only be made with large capital investment. This generates the need for for a return on investment, which prompts rationalisation, which leads to hierarchy, employees, and so on. Optimistically, it could be said that the open source Rep-rap 3D-printer, when combined with other tools in a larger peer-to-peer infrastructure, meets the criteria set out by Herbert Marcuse for what would constitute a new technology: “The technological transformation is at the same time a political transformation, but the political change would turn into qualitative social change only to the degree to which it would alter the direction of technical progress – that is, develop a new technology.” (Marcuse, 1964, p.227).
The Rep-rap project, for all its pragmatism, began with the goal of transcending capitalism. In contrast, when social movements have endorsed pragmatism and micro politics, they have typically come to terms with the present as an unsurpassable horizon for their politics. Insulated from post-modernist self-doubt, students in engineering departments never stopped dreaming of a radically better tomorrow. This Enlightenment legacy might prove important because, from environmental science to computer hacking, we are beginning to see the growing influence of engineering cultures and geek publics on traditional social movements. Activists belonging to social movements as well as social scientists have something to offer the geek public in return. Social theory is required to articulate conflicts that unfold behind individuals’s backs. State and corporate bureaucracies are clearly visible targets for hackers and hobbyist-engineers. Those institutions, which seemingly arise spontaneously out of the aggregation of individual choices – i.e. markets – are not always so easily identified. At times, engineers have denounced the price system as contrary to a rational and scientific organisation of society. At other times, price is seen as just a fact of nature, from which evolutionary laws can be deduced and the efficiency of a technical solution measured. When the latter standpoint wins the day, the market disappears from view, and all the fervour is directed against bureaucracies, state regulation and, with them, employment security. There is then an overarching risk that the dream of wealth-without-money will be fulfilled in its nightmarish form, as work-without-wages.”